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Introduction
Mantle plumes are notoriously difficult to resolve in seismic tomography, and with a
general lack of full uncertainty quantification, it is difficult to assess the robustness of
features in models. As such, models are generally assessed visually, but an automated
numerical assessment is required to quantify the presence of features objectively (e.g.
Lekic et al. (2012), Cottaar and Lekic (2016)). In this work we use a spherical wavelet
transform to simulate the noise in 6 tomographic models and assess the probability that
plumes are robust features, and not noise or artefacts of the model construction.

Spherical Wavelet Transform
Thewavelet transform is like a Fourier transform, but it keeps the localisation information
as well as the frequency (Figure 1b-j). Using the wavelet transformwe can separate out the
small-scale signals of a tomographic model, and simulate them as if they were random
noise. Taking the inverse transform we recover a new version of the model (Figure 1k).
We repeat this process to obtain a large sample, on which we can perform some statistical
tests about plumes.

Figure 1: SGLOBE-rani at 200 km depth (a) and its spherical wavelet transform (b-j). An
example new velocity map made by simulating scales i-j is shown in k. We use the scale-discretised
axisymmetic wavelet transform of Leistedt et al. (2013).

Plume Probabilities
Each map at a depth z is tiled by an 8◦× 8◦ grid. In each tile we calculate the signal-to-noise ratio by
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whereN is the number ofmaps, δvsi is the velocity perturbation in the ithmap and σv is the standard
deviation of the maps. The probability of a plume in a tile is then defined as
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where μz and σz at the mean and standard deviation of Sz, andNz is the number of depths. We also
define a confidence n, which measures how negative the mean of the distribution of S is. A more
negative mean, larger n, represents a higher confidence.

Figure 2: Left column -Plumeprobabilitymaps. MiddleColumn -Probabilities greater than66.2%,
95.4% and 99.6%. Right column - Confidence in plume probability. Filled yellow circles are the 11
primary plumes of French and Romanoicz (2015). Empty circles are other hotspots (Courtillot et
al., 2003).

Table 1: Plume probabilities at the 11 primary plume locations of French & Romanowicz (2015).

Figure 3. Vote map of very high probability plumes. Each model assigns one vote to a tile when
the plume probability is greater than 95%. Darker shades show the LLSVPs from Cottaar & Lekic
(2016). Filled yellow circles are the 11 primary plumes of French andRomanoicz (2015). Empty circles
are other hotspots (Courtillot et al., 2003).

Correlation with LLSVPs
Probability maps show high probabilities under the Pacific and Africa, so we look for a correlation
between plume probability and shear wave velocity. Figure 4 shows the correlation between
probability and velocity maps at depth beneath, and outside, the African and Pacific LLSVPs.

Figure 4: Correlation coefficients
between probability and velocity
maps depth within the boundaries
of LLSVPs given by Cottaar
& Lekic (2016). Correlation is
calculated by

C =
1
Np

∑
p

P(plume)(p)⟨δvs⟩(p)
P(plume)rms⟨δvs⟩rms

,

where p is a point in the LLSVP of
interest.

Conclusions
•We have developed an automated method for assessing the probability of mantle plumes in
tomographic models.
• Regions of high plume probability are found beneath Kenya and southern Pacific.
• All 11 primary plumes from French & Romanowicz (2015) have greater than 50% probability in
all the models, though few have a consistently high probability.
• Correlations are observed between probability and velocity maps at the LLSVPs.
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