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Problem statement
We want uncertainties on our tomographic models
Probabilistic sampling on global scales is generally too difficult
Current efforts do not allow for certain types of desirable prior information, such as sparsity
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Why sparsity
A signal is “sparse” in a certain basis if many of its expansion coefficients are 0
SPARSE IN A WAVELET BASIS! NOT SAYING THE EARTH IS SPARSE
Compressed sensing has shown that signals that are sparse in a certain basis can be 
accurately recovered from incomplete or poorly distributed data, which is the case in 
global tomography SHORTEN THIS

3Simons et al., 2011



Proximal algorithms
Convex optimisation techniques using proximity 
mappings rather than gradients

Particularly well suited to high-dimensional 
problems like gradient-based approaches

Can be applied to non-smooth problems
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What we do
Demonstrate a recent proximal MCMC algorithm on the common problem of building 
global Rayleigh wave phase velocity maps

We promote sparsity in a spherical wavelet basis

This is the first use of these proximal MCMC methods on spherical problems
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Bayesian Sampling
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𝑝 𝒎 𝒅 ∝ 𝑝 𝒅 𝒎 𝑝(𝒎)

𝑝 𝒅 𝒎 ∝ exp(− 𝒅 − 𝑨𝒎 !𝑪"# 𝒅 − 𝑨𝒎 )

𝑝 𝒎 ∝ exp(−𝜇 𝒎 )

POSTERIOR – what we want

LIKELIHOOD – what we have

PRIOR – what we think



Wavelet parameterisation
The parameters of our model are the wavelet coefficients in pixel space
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Cai et al., 2020, Leistedt et al,. 2013

Over 4,000 parameters



Proximity mappings
A gradient step in a smoothed version of a function

This smoothed version is called the 𝜆-MY envelope

Has very useful properties that are similar to the 
gradient

Parikh & Boyd, 2013
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Proximal MCMC
Unadjusted Langevin Algorithm (ULA)
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Proximal MCMC
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Replace 𝑓 with its smooth 𝜆-MY envelope
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Moreau-Yosida Unadjusted Langevin Algorithm (MYULA)
Pereyra, 2016

Our posterior is of the form 𝜋 𝒎 ∝ exp(−𝑔 𝒎 − 𝑓 𝒎 ) where 𝑓 is non-differentiable
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Proximal MCMC
So how do we calculate the prox of our prior?
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𝑓 𝒎 = 𝜇 𝒎 # ⟹ prox$% 𝒎 = soft&% 𝒎

Combettes & Pesquet, 2011

And the gradient of the likelihood?

𝑔 𝒎 =
1
2𝜎' 𝒅 − 𝑨𝒎 '

' ⟹ ∇𝑔 = 𝑨((𝑨𝒎 − 𝒅)/𝜎'



Rayleigh wave phase velocity
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Synthetic Phase velocity experiment
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Marignier et al., in review



Synthetic Phase velocity experiment
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Marignier et al., in review



Real data inversions
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Future prospects
Current work on proximal methods for 3D inversions, also promoting sparsity in a 
wavelet basis

This would result in a 3D model with full uncertainty quantification

Hope to get sharper images from the compressed sensing approach, upon which 
we can perform some hypothesis testing of features of interest thanks to the 
uncertainties
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