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Problem statement

We want uncertainties on our tomographic models
Probabilistic sampling on global scales is generally too difficult
Current efforts do not allow for certain types of desirable prior information, such as sparsity

Seismic velocity anomaly dv/v in %



Why sparsity
A signal is “sparse” in a certain basis if many of its expansion coefficients are 0
SPARSE IN A WAVELET BASIS! NOT SAYING THE EARTH IS SPARSE

Compressed sensing has shown that signals that are sparse in a certain basis can be
accurately recovered from incomplete or poorly distributed data, which is the case in
global tomography SHORTEN THIS
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Proximal algorithms

Convex optimisation techniques using proximity
mappings rather than gradients

Particularly well suited to high-dimensional
problems like gradient-based approaches

Can be applied to non-smooth problems




What we do

Demonstrate a recent proximal MCMC algorithm on the common problem of building
global Rayleigh wave phase velocity maps

We promote sparsity in a spherical wavelet basis

This is the first use of these proximal MCMC methods on spherical problems
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Bayesian Sampling

POSTERIOR — what we want
p(m|d) x p(d|m)p(m)

LIKELIHOOD — what we have
p(d|m) «< exp(—(d — Am)"C~1(d — Am))

PRIOR — what we think

p(m) o« exp(—ulm|) /

)

—— Prior - Laplace
Likelihood - Gaussian
—— Posterior
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Wavelet parameterisation

The parameters of our model are the wavelet coefficients in pixel space

Axisymmetric wavelets

Over 4,000 parameters




Proximity mappings
A gradient step in a smoothed version of a function

This smoothed version is called the A2-MY envelope

Has very useful properties that are similar to the
gradient



Proximal MCMC

Unadjusted Langevin Algorithm (ULA)

current chain sample randomness
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Proximal MCMC

Our posterior is of the form m(m) « exp(—g(m) — f(m)) where f is non-differentiable
Replace f with its smooth 1-MY envelope

current chain sample

)
: (1 - I) m(n) randomness

next chain sample
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gradient of

the likelihood  Proxof the prior

Moreau-Yosida Unadjusted Langevin Algorithm (MYULA)



Proximal MCMC I

So how do we calculate the prox of our prior?

f(m) = pllm|l; = prox}(m) = soft,,(m)
And the gradient of the likelihood?

1
g(m) = ——lld — Am||; = Vg = AT(Am —d)/o*



Rayleigh wave phase velocity
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Synthetic Phase velocity experiment
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Synthetic Phase velocity experiment

95% Credible Interval Range Ray Density (179,657 paths)
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Real data inversions

GDM52 Mean PXMCMC Credible Interval Range

_ L _ - = % )‘ S
- A LS )\ 5 preivs 2§
3 )‘» = ' N s N\ y —~8/ f T
2 4 #
;' - )2 It L3

max=4.5%

> —_— = — max=2.3%
[ . | I |
-max max 0 max
5¢/Co (%) 6¢/Co (%)

15



Future prospects

Current work on proximal methods for 3D inversions, also promoting sparsity in a
wavelet basis

This would result in a 3D model with full uncertainty quantification

Hope to get sharper images from the compressed sensing approach, upon which
we can perform some hypothesis testing of features of interest thanks to the

uncertainties



