

Cosmological mass-mapping with trans-dimensional trees

Auggie Marignier, Thomas Kitching, Jason McEwen and Ana Ferreira

Centre for Doctoral Training in Data Intensive Science University College London

4th May 2022

Gravitational Lensing

Our Aim

Create mass maps with full uncertainty quantification, via a Bayesian inversion

Promote sparsity in a wavelet basis

Posterior sampling

Repeatedly try points in parameter space and compare predictions with observed data

Wavelets and Sparsity

Natural images tend to be sparse in a wavelet basis, so we can use this as prior information

 $256 \times 256 \Rightarrow 65$, 536 wavelet coefficients \Rightarrow Too many to sample!

Bayes Theorem

 $p(\theta|\mathbf{d}) \propto p(\mathbf{d}|\theta)p(\theta)$

where θ is a *k*-dimensional vector of unknown model parameters (wavelet coefficients) where *k* is also unknown

Bayes Theorem

 $p(\theta|\mathbf{d}) \propto p(\mathbf{d}|\theta)p(\theta)$

where θ is a *k*-dimensional vector of unknown model parameters (wavelet coefficients) where *k* is also unknown

Generalising the common MCMC Metropolis-Hastings acceptance criteria gives

$$\alpha(\theta'|\theta) = \min\left\{1, \frac{p(\theta')p(\theta'|\mathbf{d})q(\theta|\theta')}{p(\theta)p(\theta|\mathbf{d})q(\theta'|\theta)}|\mathcal{J}|\right\}$$

where \mathcal{J} is the Jacobian matrix of the transformations between parameter spaces

Very commonly used in seismic imaging

Wavelet Tree Parameterisation

Trans-dimensional Trees

The parameter space can be divided up into three sets

- 1 The set of *k* active wavelet coefficients/tree nodes, who's value can change
- 2 Nodes that could possibly die
- 3 Nodes that could possibly be born

These each have their own proposal distribution $q(\theta|\theta')$

Prior on wavelet coefficients

The Generalised Gaussian Distribution (GGD)

$$f(\mathbf{x}|\mathbf{\mu}, \sigma, \beta) = \frac{\beta}{2\sigma\Gamma(\beta^{-1})} \boldsymbol{e}^{\left(-\left|\frac{\mathbf{x}-\mathbf{\mu}}{\sigma}\right|^{\beta}\right)}$$

Measurements of galaxy shapes \rightarrow shear field $\gamma(\vec{\theta})$

Want convergence field $\kappa(\vec{\theta})$ (related to density)

Measurements of galaxy shapes \rightarrow shear field $\gamma(\vec{\theta})$

Want convergence field $\kappa(\vec{\theta})$ (related to density)

In Fourier space

$$\hat{\gamma}(\vec{k}) = \frac{k_x^2 - k_y^2 + 2ik_x k_y}{k_x^2 + k_y^2} \hat{\kappa}(\vec{k})$$

Measurements of galaxy shapes \rightarrow shear field $\gamma(\vec{\theta})$

Want convergence field $\kappa(\vec{\theta})$ (related to density)

In Fourier space

$$\hat{\gamma}(\vec{k}) = \frac{k_x^2 - k_y^2 + 2ik_x k_y}{k_x^2 + k_y^2} \hat{\kappa}(\vec{k})$$

So our forward model is given by

$$\gamma = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\kappa$$

where $\mathbf{F}(\mathbf{F}^{-1})$ is the (inverse) FFT, and \mathbf{D} is the lensing kernel

Simple synthetic test

Simple synthetic test

Simple synthetic test

Compare with Kaiser-Squires

Trans-dimensional approach gives promising results on simulations

By slowly growing the parameter space, it is more efficiently sampled, making this high-dimensional problem computationally tractable

Currently working on real data inversions and uncertainty quantification

Hypothesis testing can give clues to the nature of dark matter