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Gravitational Lensing
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Our Aim

Create mass maps with full uncertainty quantification, via a Bayesian inversion

Promote sparsity in a wavelet basis
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Bayesian Inversion
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Posterior sampling

Repeatedly try points in parameter space and compare predictions with observed data
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Wavelets and Sparsity

Natural images tend to be sparse in a wavelet basis, so we can use this as prior information

256× 256⇒ 65, 536 wavelet coefficients⇒ Too many to sample!
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Trans-dimensional Bayesian Inversion

Bayes Theorem
p(θ|d) ∝ p(d|θ)p(θ)

where θ is a k -dimensional vector of unknown model parameters (wavelet coefficients)
where k is also unknown

Generalising the common MCMC Metropolis-Hastings acceptance criteria gives

α(θ ′|θ) = min

{
1,

p(θ ′)p(θ ′|d)q(θ|θ ′)

p(θ)p(θ|d)q(θ ′|θ)
|J|

}
where J is the Jacobian matrix of the transformations between parameter spaces

Very commonly used in seismic imaging
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Wavelet Tree Parameterisation
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Trans-dimensional Trees

The parameter space can be divided up into
three sets

1 The set of k active wavelet
coefficients/tree nodes, who’s value can
change

2 Nodes that could possibly die

3 Nodes that could possibly be born

These each have their own proposal
distribution q(θ|θ ′)
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Prior on wavelet coefficients

The Generalised Gaussian Distribution (GGD) f (x |µ,σ,β) = β
2σΓ(β−1)

e
(
−| x−µ

σ |
β
)
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Mass-Mapping

Measurements of galaxy shapes→ shear field γ(~θ)

Want convergence field κ(~θ) (related to density)

In Fourier space

γ̂(~k) =
k2

x − k2
y + 2ikxky

k2
x + k2

y
κ̂(~k)

So our forward model is given by
γ = F−1DFκ

where F (F−1) is the (inverse) FFT, and D is the lensing kernel
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Simple synthetic test
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Compare with Kaiser-Squires
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Conclusions

Trans-dimensional approach gives promising results on simulations

By slowly growing the parameter space, it is more efficiently sampled, making this
high-dimensional problem computationally tractable

Currently working on real data inversions and uncertainty quantification

Hypothesis testing can give clues to the nature of dark matter
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