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Talk outline

1 Seismology and Cosmology

2 Intro to inverse imaging

3 Bayesian imaging

4 Wavelets and Sparsity

5 Proximal MCMC on the sphere (seismology)

6 Trans-dimensional trees (cosmology)
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Seismology

The study of earthquakes and the propagation of seismic waves through the Earth
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Global Seismic Tomography

Seismic tomography maps the internal structures of the Earth from measurements of seismic
waves
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Why?

Some tectonics
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Cosmology

The study of the observable universe, its origins, structures, dynamics and fate. . .

Credit: Pablo Carlos Budassi
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Gravitational Lensing

Weak lensing maps the density distribution of the universe from measurements of distorted
images

Credit: Mattias Bartelmann
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Why?

“Direct empirical proof of the existence of dark matter” (Clowe et al 2004)
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Gravitational Lensing

ESA EUCLID - Exploring the Dark Universe

VIS (visible light) instrument has 600 000 000 pixels with resolution 0.1”
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So what’s the connection?

DATA MODEL
Seismic dispersion
Gravitational shear

Tomographic model
Mass-map

Inverse Problem
Bayesian sampling

Optimisation
Least-squares

Forward Problem
Waveform simulation
Gravitational Lensing
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Inverse Imaging

Our aim is to retrieve an image
of something we can’t see using
some other observable data

d = G (m)

Auggie Marignier ANU RSES School Seminar 20/7/2023 11 / 50



Inverse Imaging

Driven by the requirements of
the applications

Almost always ill-posed

Non-linear forward models

Increasing resolution
requirements

Increasing volumes of data

Uncertainty quantification

Auggie Marignier ANU RSES School Seminar 20/7/2023 11 / 50



Bayesian Inversion
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Posterior sampling

Repeatedly try points in parameter space and compare predictions with observed data
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Posterior sampling

Some practical considerations:

How many parameters?

How long do predictions
take?

How long do proposals
take?

How many points do you
try?
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Previous Examples: Seismology

Trans-dimensional MCMC — allow the length of m to vary

Global P wave tomography of Earth’s lowermost mantle from partition modelling (Young et al., 2013)
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Previous Examples: Cosmology

Hamiltonian Monte Carlo — imaging high-dimensional spaces

KaRMMa — kappa reconstruction for mass mapping (Fiedorowicz et al., 2022)
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Wavelets and Sparsity

Natural images tend to be sparse in a wavelet basis, so we can use this as prior information
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Wavelets and Sparsity

Sparsity is described by the Laplace Distribution

p(x) ∝ e−|x |
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Previous Examples: Cosmology

Sparse mass-mapping with proximal convex optimisation

Sparse Bayesian mass-mapping with uncertainties: Full sky observations on the celestial sphere (Price et al., 2020)
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Previous Examples: Seismology

Least-squares with sparse regularisation

Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity (Simons et al., 2011)
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Overall Aim

Advance imaging methods and uncertainty quantification in both seismic and cosmological
imaging by transferring ideas from one field to the other

1 Proximal MCMC with wavelet priors (cosmology → seismology)

2 Transdimensional MCMC with wavelet priors (seismology → cosmology)
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Talk outline

1 Intro to inverse imaging

2 Bayesian imaging

3 Wavelets and Sparsity

4 Proximal MCMC on the sphere (seismology)

5 Trans-dimensional trees (cosmology)
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Aim

Build global images of surface wave phase speed from surface wave dispersion with full
uncertainty quantification

Promote sparsity in a spherical wavelet basis

→
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The Forward Model

Great circle path integral of the velocity field c(θ, ϕ) for all seismic sources and receivers

di =
1

∆

∫ θi2,ϕ
i
2

θi1,ϕ
i
1

c(θ, ϕ)ds for i = 1, . . . ,Npaths ∼ O(105)
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The Forward Model in Pixel Space

Discretise the path along the surface of the sphere and evaluate the integral numerically

Less accurate but much faster than a common harmonic formulation!
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Spherical wavelet basis

Parameter space is the space of wavelet coefficients

At bandlimit L = 28, this gives over 4000 parameters to sample
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Proximal MCMC

As the number of parameters to sample increases, more complex algorithms are needed to
efficiently navigate the parameter space

A common choice is to use the gradient of the posterior distribution to move towards the
global maximum

But here the posterior is not differentiable. . .

Auggie Marignier ANU RSES School Seminar 20/7/2023 25 / 50



Proximal MCMC

As the number of parameters to sample increases, more complex algorithms are needed to
efficiently navigate the parameter space

A common choice is to use the gradient of the posterior distribution to move towards the
global maximum

But here the posterior is not differentiable. . .

Auggie Marignier ANU RSES School Seminar 20/7/2023 25 / 50



Proximal MCMC

As the number of parameters to sample increases, more complex algorithms are needed to
efficiently navigate the parameter space

A common choice is to use the gradient of the posterior distribution to move towards the
global maximum

But here the posterior is not differentiable. . .

Auggie Marignier ANU RSES School Seminar 20/7/2023 25 / 50



Proximity mapping vs Gradient

proxλf (v) = argmin
x

(
f (x) +

1

2λ
∥x − v∥22

)
proximal mapping ∼ gradient step in a
smoothed function (MY-envelope)

Can be applied to non-smooth functions
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Unadjusted Langevin Algorithm

A gradient-based MCMC sampler

To get the next chain sample you need

the current sample, the gradient of the posterior, and
some randomness

m(n+1) =

m(n) +
δ

2
∇ log

(
p
(
m(n)|d

))
+
√
δw (n)
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Moreau-Yosida Unadjusted Langevin Algorithm

A proximal MCMC sampler

To get the next chain sample you need

the current sample, the gradient of the likelihood, the
prox of the prior, and some randomness

m(n+1) =

m(n) + δ∇p
(
d |m(n)

)
+

δ

λ
proxλ∥·∥1

(
m(n)

)
+
√
δw (n)
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Calculating the prox

In general this involves a small convex optimisation problem

In the case of the ℓ1-norm though, it’s very simple

f (m) = µ∥m∥1 ⇒ proxλf (m) = softµλ(m)
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Results
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Results
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Push to 3D?

Defining 3D spherical wavelets significantly increases the size of the parameter space and
computation time of a single iteration.
Initial tests would take well over 2 weeks to converge

Figure: Attempts using proximal convex optimisation
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Conclusions

Proximal MCMC can be used to build 2D spherical images at resolutions expected for
seismology (L < 64)

Uncertainties are physically reasonable and aid interpretation

Aiming to build 3D images, but this is computationally very expensive.
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Talk outline
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Reminder: Gravitational Lensing

Weak lensing maps the density distribution of the universe from measurements of distorted
images

Credit: Mattias Bartelmann
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Mass-Mapping

Measurements of galaxy shapes → shear field γ(θ⃗)

Want convergence field κ(θ⃗) (related to density)

In Fourier space

γ̂(k⃗) =
k2x − k2y + 2ikxky

k2x + k2y
κ̂(k⃗)

So our forward model is given by
γ = F−1DFκ

where F (F−1) is the (inverse) FFT, and D is the lensing kernel
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Our Aim

Create mass maps with full uncertainty quantification

Promote sparsity in a wavelet basis

→
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Wavelet Representations of Images

256× 256 ⇒ 65, 536 wavelet coefficients ⇒ Too many to sample!
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Trans-dimensional Bayesian Inversion

Bayes Theorem
p(θ|d) ∝ p(d|θ)p(θ)

where θ is a k-dimensional vector of unknown model parameters (wavelet coefficients) where k
is also unknown

Generalising the common MCMC Metropolis-Hastings acceptance criteria gives

α(θ′|θ) = min

{
1,

p(θ′)p(d|θ′)q(θ|θ′)
p(θ)p(d|θ)q(θ′|θ) |J |

}
where J is the Jacobian matrix of the transformations between parameter spaces
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Wavelet Tree Parameterisation

From Hawkins & Sambridge (2015)
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Trans-dimensional Trees

The parameter space can be divided up into
three sets

1 The set of k active wavelet
coefficients/tree nodes, who’s value can
change

2 Nodes that could possibly die

3 Nodes that could possibly be born

These each have their own proposal
distribution q(θ|θ′)
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Prior on wavelet coefficients

The Generalised Gaussian Distribution (GGD) f (x |µ, σ, β) = β
2σΓ(β−1)

e

(
−| x−µ

σ |β
)

−0.02 −0.01 0.00 0.01 0.02

Wavelet coefficient κ(j)

j = 2, β = 1.0, σ = 10−2

j = 3, β = 0.5, σ = 10−4

j = 4, β = 0.4, σ = 10−4

j = 5, β = 0.4, σ = 10−5

j = 6, β = 0.3, σ = 10−5

j = 7, β = 0.3, σ = 10−6

j = 8, β = 0.3, σ = 10−7
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Simple synthetic test
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Simple synthetic test
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Realistic Noise Levels

Even with the best Euclid resolution, most
pixels will have infinite noise!

Need to decrease the image resolution to
reduce the noise per pixel

Better image reconstruction than standard
methods + uncertainties
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Realistic Noise Levels

Even with the best Euclid resolution, most
pixels will have infinite noise!

Need to decrease the image resolution to
reduce the noise per pixel

Better image reconstruction than standard
methods + uncertainties
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Conclusions

Trans-dimensional approach gives promising results on simulations

By slowly growing the parameter space, it is more efficiently sampled, making this
high-dimensional problem computationally tractable

Produces better images than standard approaches even at high-noise levels
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Overall Conclusions

Advanced techniques are starting to make probabilistic sampling feasible for imaging problems

Sparsity/compressed sensing is playing a significant role

Looking forward, as resolution demands increase, these efficient samplers and
parameterisations will be crucial
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Thank you!
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Additional Slides
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Spherical wavelet transform

Denote the set of spherical harmonic coefficients of some spherical signal by a hat i.e.

x̂ = Yx

The spherical wavelet transform Ψ of some spherical signal x is composed of a spherical
harmonic transform Y and a harmonic wavelet multiplication W

α̂ = Wx̂

α = Ψx = Y−1Wx̂ = Y−1WYx

And the inverse spherical wavelet transform is then

x = Ψ−1x = Y−1W †Yα
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The Forward Model in Harmonic Space

The great circle path integral can be calculated by rotating the field c(θ, ϕ) to c(θ′, ϕ′) such
that (θ2, ϕ1) → (π/2, 0) and (θ2, ϕ2) → (π/2,∆) (i.e. the path is now along the equator)

1

∆

∫ θ2,ϕ2

θ1,ϕ1

c(θ, ϕ)ds =
∑
ℓ

∑
m

(−i

m

)(
Yℓm

(π
2
,∆

)
− Yℓm

(π
2
, 0
))∑

n

Dℓ
mncℓn

Yℓm = spherical harmonics

Dℓ
mn = Wigner-D matrices

cℓn = spherical harmonic coefficients
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The Forward Model in Harmonic Space

As a matrix multiplication, if we sample the harmonic wavelet coefficients α̂ we have

d = Φh ĉ = ΦhW †α̂

where Φh ∈ CNpaths×L2 is a generally dense matrix representing the path integral

Notice that this avoids computationally expensive spherical harmonic transforms (Y )

But Φh is so large and dense that its multiplication is much slower than spherical harmonic
transforms!

Auggie Marignier ANU RSES School Seminar 20/7/2023 50 / 50



The Forward Model in Harmonic Space

As a matrix multiplication, if we sample the harmonic wavelet coefficients α̂ we have
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